Using DSP500 Sensors, technicians make only one trip around the car to compensate each sensor as it is mounted.
In its most basic form, a wheel alignment consists of adjusting the angles of the wheels so that they are perpendicular to the ground and parallel to each other. The purpose of these adjustments is maximum tire life and a vehicle that tracks straight and true when driving along a straight and level road.
This article begins with information that any motorist should know; however, if you are interested in learning more about this topic, click on the underlined words for more detailed explanations of each term. We will cover various levels of detail with the deepest levels containing information that even a wheel alignment technician will find informative.
Wheel Alignment is often confused with Wheel Balancing. The two really have nothing to do with each other except for the fact that they affect ride and handling. If a wheel is out of balance, it will cause a vibration at highway speeds that can be felt in the steering wheel and/or the seat. If the alignment is out, it can cause excessive tire wear and steering or tracking problems.

Camber
Camber is the angle of the wheel, measured in degrees, when viewed from the front of the vehicle. If the top of the wheel is leaning out from the center of the car, then the camber is positive ,if it's leaning in, then the camber is negative. If the camber is out of adjustment, it will cause tire wear on one side of the tire's tread. If the camber is too far negative, for instance, then the tire will wear on the inside of the tread.
Camber wear pattern

Caster


Toe-in


Four-Wheel Alignments
There are two main types of 4-wheel alignments. In each case, the technician will place an instrument on all four wheels. In the first type the rear toe and tracking is checked, but all adjustments are made at the front wheels. This is done on vehicles that do not have adjustments on the rear. The second type is a full 4-wheel alignment where the adjustments are first made to true up the rear alignment, then the front is adjusted. A full 4-wheel alignment will cost more than the other type because there is more work involved.
Other facts every driver should know about wheel alignments.
A proper wheel alignment should always start and end with a test drive.
The front end and steering linkage should be checked for wear before performing an alignment.
The tires should all be in good shape with even wear patterns. If you have a tire with excessive camber wear, for instance, and you correct the alignment problem that caused that wear, the tire will now be making only partial contact with the road.

Pulling problems are not always related to wheel alignment. Problems with tires (especially unequal air pressure), brakes and power steering can also be responsible. It is up to a good wheel alignment technician to determine the cause.
Advanced Wheel Alignment Information.
While Camber, Caster & Toe-in are the settings that are always checked when doing a wheel alignment, they are not the only settings. Below is a list of the alignment settings that are important for a wheel alignment technician to know about in order to diagnose front end problems.
Camber
When camber specifications are determined during the design stage, a number of factors are taken into account. The engineers account for the fact that wheel alignment specifications used by alignment technicians are for a vehicle that is not moving. On many vehicles, camber changes with different road speeds. This is because aerodynamic forces cause a change in riding height from the height of a vehicle at rest. Because of this, riding height should be checked and problems corrected before setting camber. Camber specs are set so that when a vehicle is at highway speed, the camber is at the optimal setting for minimum tire wear.
For many years the trend has been to set the camber from zero to slightly positive to offset vehicle loading, however the current trend is to slightly negative settings to increase vehicle stability and improve handling.
Caster
Positive caster improves straight line tracking because the caster line (the line drawn through the steering pivot when viewed from the side) intersects the ground ahead of the contact patch of the tire. Just like a shopping cart caster, the wheel is forced behind the pivot allowing the vehicle to track in a straight line.
If this is the case, then why did most cars have negative caster specs prior to 1975 ? There are a couple of reasons for this. In those days, people were looking for cars that steered as light as a feather, and cars back then were not equipped with radial tires. Non-radial tires had a tendency to distort at highway speed so that the contact patch moved back past the centerline of the tire (Picture a cartoon car speeding along, the tires are generally drawn as egg-shaped). The contact patch generally moves behind the caster line causing, in effect, a positive caster. This is why, when you put radial tires on this type of car, the car wanders from side to side and no longer tracks straight. To correct this condition, re-adjust the caster to positive and the car should steer like a new car.
Toe
Like camber, toe will change depending on vehicle speed. As aerodynamic forces change the riding height, the toe setting may change due to the geometry of the steering linkage in relation to the geometry of the suspension. Because of this, specifications are determined for a vehicle that is not moving based on the toe being at zero when the vehicle is at highway speed. In the early days prior to radial tires, extra toe-in was added to compensate for tire drag at highway speed.
On some older alignment machines, toe-in was measured at each wheel by referencing the opposite wheel. This method caused problems with getting the steering wheel straight the first time and necessitated corrective adjustments before the wheel was straight. Newer machines reference the vehicle's centerline by putting instruments on all four wheels. For more information on this see Steering Center and Thrust angle.
Steering Axis Inclination (SAI)

Included Angle

Scrub Radius

If the brake on one front wheel is not working, with positive scrub radius, stepping on the brake will cause the steering wheel to try to rip out of your hand. Negative scrub radius will minimize that effect.
Scrub radius is designed at the factory and is not adjustable. If you have a vehicle that is pulling even though the alignment is correct, look for something that will affect scrub radius.
Riding Height
